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ABSTRACT

Context. Key elements of the Babcock-Leighton model for the solar dynamo are increasingly constrained by observations.
Aims. We investigate whether the Babcock-Leighton flux-transport dynamo model remains in agreement with observations if the
meridional flow profile is taken from helioseismic inversions. Additionally, we investigate the effect of the loss of toroidal flux
through the solar surface.
Methods. We employ the two-dimensional flux-transport Babcock-Leighton dynamo framework. We use the helioseismically-inferred
meridional flow profile, and include toroidal flux loss in a way that is consistent with the amount of poloidal flux generated by Joy’s
law. Our model does not impose a preference for emergences at low latitudes, we do however require that the model produces such a
preference.
Results. We can find solutions in general agreement with observations, including the latitudinal migration of the butterfly wings and
the cycle’s 11 year period. The most important free parameters in the model are the depth to which the radial turbulent pumping
extends and the turbulent diffusivity in the lower half of the convection zone. We find that the pumping needs to extend to depths of
about 0.80R⊙ and the bulk turbulent diffusivity needs to be around 10 km2/s or less. We find that the emergences are restricted to low
latitudes without the need to impose such a preference.
Conclusions. The flux-transport Babcock-Leighton model, incorporating the helioseismically inferred meridional flow and toroidal
field loss term, is compatible with the properties of the observed butterfly diagram and with the observed toroidal loss rate. Reasonably
tight constraints are placed on the remaining free parameters. The pumping needs to be to just below the depth corresponding to
the location where the meridional flow changes direction, and where numerical simulations suggest the convection zone becomes
marginally subadiabatic. Our linear model does not however reproduce the observed “rush to the poles” of the diffuse surface radial
field resulting from the decay of sunspots – reproducing this might require the imposition of a preference for flux to emerge near the
equator.
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1. Introduction

The solar cycle is driven by a self-excited fluid dynamo which is
induced by the interaction between the large-scale magnetic field
and flows within the convection zone of the Sun (Ossendrijver
2003; Charbonneau 2014). In the first part of the dynamo loop,
differential rotation winds up poloidal magnetic field generating
toroidal field. This is the so-called Ω-effect. The Ω-effect is both
well understood and constrained by observations.

In the second part of this loop, the toroidal field gener-
ates new poloidal magnetic field. This new poloidal field has
the opposite polarity to the original poloidal field. Each 11-
year sunspot (or Schwabe) cycle is half of the 22-year magnetic
(or Hale) cycle required to revert to the original polarity. Non-
axisymmetric flows and fields play a critical role during this
phase of the cycle. The non-axisymmetric processes involved in
the second phase, however, are far from being either well under-
stood or constrained.

A major success of helioseismology was the determination
of the sub-surface solar rotation profile, which challenged the
dynamo-wave paradigm (Gough & Toomre 1991). This chal-
lenge lead to the flux-transport dynamo (FTD) model (Wang
et al. 1991) where the deep meridional circulation causes the

emergence locations of sunspots to drift equatorwards during a
solar cycle. Observational and theoretical studies (see eg. Dasi-
Espuig et al. 2010; Kitchatinov & Olemskoy 2011; Cameron
& Schüssler 2015) provide strong support for the Babcock-
Leighton mechanism (BL - Babcock 1961; Leighton 1964, 1969)
to be the dominant mechanism in the second part of the dynamo
loop, as opposed to the turbulent α-effect (Parker 1955; Steen-
beck et al. 1966). At the core of the BL mechanism is the role
played by the surface field. Sunspots emerge in bipolar magnetic
pairs, with an east-west orientation usually in accordance with
Hale’s law. There is also a statistical tendency called Joy’s law
where the following spots to emerge closer to the poles and the
leading spots to emerge closer to the equator. Sunspots decay
within a few days to months, after which the field is dispersed by
small-scale convective motions and transported poleward by the
meridional flow. The flux cancellation of leading sunspot fields
across the equator allows for the net buildup of a polar field by
trailing sunspot fields.

Transport processes are required at the surface in order to
transport the radial field from the equator to the poles, and to
transport the subsurface toroidal field equatorwards to account
for the equatorial migration of the butterfly wings (Spörer’s law).
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The surface part of the required transport has been established by
observations of the surface meridional flow and the success of
the surface flux transport model. The helioseismically inferred
subsurface meridional flow is a relatively new constraint for
these models. The use of the helioseismically-inferred merid-
ional flow profile removes a number of free parameters from
Babcock-Leighton type models. This makes a comparison with
the observations a tighter test of the model and allows us to better
constrain the remaining free parameters.

An additional recent constraint is that toroidal flux is lost
through flux emergence, with a timescale estimated to be around
12 years by Cameron & Schüssler (2020, hereafter CS20). This
paper will investigate if the BL FTD model, using the merid-
ional flow inferred by Gizon et al. (2020, hereafter G20), and
including the toroidal flux loss associated with flux emergence,
is consistent with observations. To this end we introduce a loss
term in the evolution equation for the toroidal field that is consis-
tent with the evolution of the poloidal flux associated with Joy’s
law.

In the Babcock-Leighton type of model considered in this
paper, the turbulent convective motions are not explicitly sim-
ulated, instead their affect on the magnetic field is parameter-
ized (eg. Charbonneau 2014). Mean-field theory (Moffatt 1978;
Krause & Rädler 1980) actually shows that including the effect
of turbulence introduces a large number of parameters. In the
Babcock-Leighton model only a few are kept, the most important
of which include the α-effect, an increased turbulent diffusion,
and downward diamagnetic pumping. Of these, the Babcock-
Leighton α-effect is poorly understood but well constrained by
observations, while turbulent pumping and turbulent diffusion
are largely unconstrained.

In this paper we will see if the FTD model, with the observed
meridional flow and flux loss, is compatible with the Babcock-
Leighton model, and what constraints it places on the other pro-
cesses of the model.

2. Model

2.1. Dynamo equations

In mean-field theory, the axisymmetric large-scale magnetic and
velocity fields are decomposed into poloidal and toroidal com-
ponents as:

B = ∇ × [A(r, θ, t)êϕ] + B(r, θ, t)êϕ, (1)

u = um(r, θ) + r sin θ Ω(r, θ)êϕ, (2)

where A is the ϕ-component of the vector potential field and B
is the toroidal component of the large-scale magnetic field, um is
the meridional circulation, and Ω is the differential rotation. For
an isotropic turbulent diffusivity that has only a r-dependence,
the kinematic mean-field dynamo equations are:

∂A
∂t
= −

up

ϖ
· ∇(ϖA) + η

(
∇2 −

1
ϖ2

)
A + S , (3)

∂B
∂t
= −ϖup · ∇

( B
ϖ

)
+ η

(
∇2 −

1
ϖ2

)
B +

1
ϖ

∂(ϖB)
∂r

dη
dr

− B∇ · up +ϖ[∇ × (Aêϕ)] · ∇Ω − L,
(4)

where ϖ = r sin θ, up = um + γ, η is the turbulent diffusivity, γ
the turbulent pumping, S the BL source term, and L the toroidal
field loss term due to flux emergence. The source and loss terms
will be discussed in Section 2.4.

-90° -75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°90°

340

360

380

400

420

440

460

Ω
[nHz]

-90° -75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°90°

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

ψ
[×1018 kg/s]

Fig. 1. Rotation profile of Belvedere et al. (2000) given by equation 5
(left) and cycle-averaged and symmetrized stream function of the helio-
seismic meridional flow inversions of G20 (right). For the latter, posi-
tive values represent clockwise circulation and negative anticlockwise.
The dash-dotted and dotted lines represent the approximate locations of
the tachocline at 0.7R⊙ and reversal of the meridional flow direction at
0.8R⊙, respectively.

2.2. Differential rotation and meridional circulation

The large-scale flows need to be prescribed in kinematic models.
For the differential rotation, we use the simple model provided
by Belvedere et al. (2000) and shown in the left panel of Figure
1:

Ω(r, θ) =
2∑

j=0

cos(2 jθ)
4∑

i=0

ci jri, (5)

where the coefficients ci j can be found in that paper. This fit is an
approximation of the helioseismologically inferred rotation rate
of Schou et al. (1998).

As mentioned in the introduction, we will use the meridional
circulation inferred from observations. In this study, we use the
inversions of G20. The authors furnish the meridional flow for
cycles 23 and 24. In order to keep the parameter space study
manageable, we take the average of the two cycles. In addition,
since we are not here interested in the asymmetry between both
hemispheres, we also symmetrize the flow across the equator.
The right panel of Figure 1 shows the meridional circulation we
use in all our models. Note that the flow switches from poleward
to equatorward at a radius of about 0.785R⊙, which we will call
the meridional flow turnover depth rt, and the region beneath it
the lower or deep convection zone, and the one above the upper
or shallow convection zone.

2.3. Turbulent parameterizations

We choose a turbulent diffusivity profile which is written as a
double step as in Muñoz-Jaramillo et al. (2011):

η(r) = ηRZ+
ηCZ − ηRZ

2

[
1 + erf

(
r − 0.72R⊙
0.012R⊙

)]
+
ηR⊙ − ηCZ − ηRZ

2

[
1 + erf

(
r − 0.95R⊙

0.01R⊙

)]
,

(6)

where ηRZ = 0.1 km2/s, ηR⊙ = 350 km2/s, and ηCZ are respec-
tively the radiative core, surface, and bulk values of the turbu-
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lent diffusivity. ηCZ is a free parameter and ηR⊙ has been chosen
to be consistent with estimates from observations (eg. Komm
et al. 1995), the surface flux transport model of Lemerle et al.
(2015), and MLT (eg. Muñoz-Jaramillo et al. 2011). The values
in the first error function have been chosen so that the drop in
diffusivity occurs mostly before the helioseismically determined
position of the tachocline (Charbonneau et al. 1999), roughly co-
inciding with the overshoot region (Christensen-Dalsgaard et al.
2011).

For the turbulent pumping, we adopt the profile given by
Karak & Cameron (2016, hereafter KC16 – see also the discus-
sion in their section 2):

γ = −
γ0

2

[
1 + erf

(
r − rγ

0.01R⊙

)]
êr, (7)

where here we take rγ = rt = 0.785R⊙. This choice will be
discussed in Section 4.2.3.

2.4. Flux emergence

The emergence of bipolar magnetic regions both removes
toroidal flux (see CS20) and creates poloidal flux (because of
Joy’s law). These two processes are clearly linked as are the re-
spective loss and source terms in Equations 4 and 3.

We take the amount of flux emerging to be proportional to
the toroidal flux density

b(θ, t) =
∫ R⊙

0.7R⊙
B(r, θ, t)rdr, (8)

where the integration is over the depth of the convection zone.
This prescription corresponds to a dynamo where the toroidal
field is not necessarily stored near the tachocline but can be dis-
tributed throughout the convection zone (KC16, Zhang & Jiang
2022). It is in part motivated by observations of dynamos in
fully convective stars (Wright & Drake 2016), and by cyclic dy-
namo action in 3D MHD simulations of spherical shells without
a tachocline (eg. Brown et al. 2010; Nelson et al. 2013, 2014).
The flux emergence rate R can be written in general as a function
of latitude:

R(θ, t) = fθ(θ)
b(θ, t)
τ0
, (9)

where τ0 is a timescale and fθ(θ) is its latitudinal dependence,
which we take to be

fθ(θ) = sin θ, (10)

corresponding to an emergence probability that is constant per
unit length of the toroidal field lines.

In general the timescale, τ0 in Equation 9 depends on the
dynamics associated with flux emergence. If these dynamics are
dominated by the large-scale field than the buoyant rise time and
τ0 to depend inversely on the mean-field value of B2 (Kichati-
nov & Pipin 1993). If however small-scale magnetic fields re-
main coherent over timescales longer than the correlation time,
then the B filling factor which can be far from 1 becomes im-
portant. Some previous studies (eg. Schmitt & Schüssler 1989;
Moss et al. 1990a,b; Jennings & Weiss 1991) assume τ ∼ B−2 so
that the loss term scales like B3. In this paper we consider the lin-
ear case where τ0 is a constant, and which would correspond to
a case where the field is composed of filamentary structures with
lifetimes longer than the turnover timescale of the turbulence and
with local field strengths drawn from some distribution which is

independent of flux. We stress that the aim in this paper is to
consider a simple linear system. We defer the nonlinear case to
future work.

The orientation of the flux emergence is governed by Joy’s
law which states that the leading polarity flux emerges on aver-
age closer to the equator than the trailing polarity one. We take
the form of Joy’s law used in Leighton (1969), sin δ = 1

2 cos θ,
where δ is the angle between the solar equator and the line join-
ing the two polarities. Then the rate at which toroidal flux density
is lost due to flux emergence is

∂b
∂t

∣∣∣∣∣
L
= − cos δ R(θ, t),

= − fθ(θ) cos δ
b(θ, t)
τ0
,

(11)

where the subscript L indicates the contribution from the loss
term. The tilting of a toroidal flux tube as it emerges gives rise
to a θ-component of the same polarity. The rate at which this
θ-component of the flux density is lost is

∂

∂t

∫ R⊙

0.7R⊙
Bθ(r, θ, t)rdr

∣∣∣∣∣∣
S
= − sin δ R(θ, t),

= − fθ(θ) sin δ
b(θ, t)
τ0
.

(12)

where the subscript S indicates the contribution from the source
term S . This is what gives rise to the Babcock-Leighton mecha-
nism. From the definition of the poloidal field (Equation 1),

Bθ = −
1
r
∂rA
∂r
. (13)

We choose a depth Rb sufficiently below the base of the con-
vection zone so that the 11-year cyclic component of the field
is negligible there. Then multiplying both sides by r and inte-
grating from the base of the convection zone to the surface, we
obtain∫ R⊙

Rb

Bθ(r, θ, t)rdr = − (A(R⊙, θ, t)R⊙ − A(Rb, θ, t)Rb)

= − A(R⊙, θ, t)R⊙.
(14)

Therefore, in terms of the ϕ-component of the poloidal vector
potential A, Equation 12 becomes

∂A(R⊙, θ, t)
∂t

∣∣∣∣∣
S
= fθ(θ) sin δ

b(θ, t)/R⊙
τ0

. (15)

Next, we need to prescribe the radial structure of the source
and loss terms. For the source term S , we follow KC16 and as-
sume

S (r, θ, t) = f S
r (r) sin θ sin δ

b(θ, t)/R⊙
τ0

, (16)

where

f S
r (r) =

1
2

[
1 + erf

(
r − rS

0.01R⊙

)]
. (17)

rS is the depth to which the source extends. For most of the
calculations, we choose rS = 0.85R⊙ (as in Muñoz-Jaramillo
et al. 2010). There are indications that this disconnection should
happen much deeper than the usually assumed shallow location
of 0.95R⊙ (Longcope & Choudhuri 2002). We will nevertheless
vary this parameter in order to study its impact on the solutions.
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For the loss term L, we first distribute the toroidal flux den-
sity loss (equation 11) over radius according to the amount of
flux initially present, so that

L(r, θ, t) = f L
r (r) sin θ cos δ

B(r, θ, t)
τ0

, (18)

where

f L
r (r) =

1
2

[
1 + erf

(
r − 0.70R⊙

0.01R⊙

)]
. (19)

In order for the differential form of the source and loss terms
to be valid, the emergence timescale τe must be considered in-
finitesimal with respect to the timescale over which the magnetic
configuration of the large-scale field changes appreciably. It fol-
lows that a timescale separation must hold:

τe ≪ P. (20)

In the case of the Sun, τe ∼ 1 day, and P = 11 years, so the
timescale separation is reasonable. This formulation implicitly
ignores the effect of the meridional flow on the the emergence
process. Nevertheless, this formulation is sufficient to study the
general features of the solar cycle.

2.5. Numerical procedure

Equations 3 and 4 are nondimensionalized and numerically
solved in the meridional plane with 0 ≤ θ ≤ π and 0.65R⊙ ≤ r ≤
R⊙. We use a spatial resolution of 241× 301 evenly spaced in ra-
dius and colatitute grid points and a time step of 5 × 10−6R2

⊙/ηt,
where ηt = 10 km2/s. The inner boundary matches to a perfect
conductor, so that:

A = 0 and
∂(rB)
∂r
= 0 at r = 0.65R⊙, (21)

and the outer boundary condition is radial:

∂(rA)
∂r
= 0 and B = 0 at r = R⊙. (22)

The latter is necessary for FTD models to match surface flux
transport models (Cameron et al. 2012). A second-order centered
finite difference discretization is used for the spatial variables
and the solution is forwarded in time with the ADI scheme (Press
et al. 1986). We use the code initially developed by D. Schmitt
in Göttingen (as also used by Cameron et al. 2012).

The linearity of equations 3 and 4 allows us to choose τ0 and
γ0 such that the dynamo is approximately critical (σ ≤ 5 × 10−5

per year) with a cycle period of 12 years (within 0.1%), roughly
the average period of cycles 23 and 24. This way we reduce our
parameter space to only one dimension (ηCZ). Our model being
linear also means we can arbitrarily scale A and B. In order to fa-
cilitate comparisons with observations, we scale the fields so that
the maximum of the surface radial field is 10 G, which is con-
sistent with the observed polar field strengths at cycle minimum
(eg. Hathaway 2015).

3. Observational constraints

3.1. Toroidal flux loss timescale

The general expression for the toroidal flux decay timescale is

τ(t) = −
Φ(t)

dΦ(t)/dt
, (23)

where Φ is understood as the net subsurface toroidal flux in the
northern hemisphere:

Φ(t) =
∫ π/2

0
b(θ, t)dθ, (24)

and dΦ
dt is its decay. In order to calculate the latter, we first need

to specify the toroidal flux loss mechanism. For the loss L due to
flux emergence, we have

dΦ
dt

∣∣∣∣∣
L
= −

∫ π/2

0

∫ R⊙

0.70R⊙
L(r, θ, t)rdrdθ, (25)

and its corresponding timescale will be denoted by τL. Toroidal
flux is also lost due to the explicit diffusion across the solar sur-
face:

dΦ
dt

∣∣∣∣∣
η
= ηR⊙

∫ π/2

0

∂ (rB (r, θ, t))
∂r

∣∣∣∣∣
R⊙

dθ, (26)

with an associated loss timescale of τη. The observational con-
straint on the flux loss timescale is given by CS20, and cor-
responds to τL ≈ 12 years at solar maximum. Since these
timescales vary across a cycle, we will calculate them at cycle
maximum (to be defined in Section 3.2).

It is possible to estimate the range of values τ0 should take.
To do so we assume the tilt angle δ associated with Joy’s law
is small, so that cos δ ∼ 1, and that the toroidal flux density
can be approximated by b(θ, t) = b0(t) sinm θ, where b0(t) is a
time-dependent scalar, and m determines how closely the field
is concentrated near the equator. With these approximations, we
obtain:

1 <
τL

τ0
<
π

2
, (27)

where τ0 is the timescale for flux loss in the model, defined in
equation 9, and the limits correspond to m = 0 and m = ∞.
The model parameter τ0 should thus be comparable to (not more
than a factor of 2 smaller than) the observed toroidal flux loss
timescale τL.

3.2. Polar cap and activity belt flux densities

An important observational constrain is that the maxima of az-
imuthally averaged polar flux densities should be around the
same strength as maximum flux densities in the activity belt.
Since the evolution equations we are using are linear, we have
nominally set the maximum of the polar field to be 10 G. This
implies that the azimuthaly averaged radial field in the butterfly
wings in the model should also be around 10 G. This is a con-
straint on the model which we will return to when evaluating
whether the model can produce solar-like cycles.

3.3. Cycle phase of polar maxima

An important constraint we will take into account is when the
maximum of polar flux occurs. As it is observed to happen quite
close to the activity minimum, its corresponding phase shift of
about 90◦ with respect to cycle maximum. To measure this shift
in the simulations, we need a definition for when the cycle max-
ima and the maxima of polar fields occur.

We begin with the surface radial flux of the polar cap

Φp(t) ≡ 2πR2
⊙

∫ 90°

60°
Br(R⊙, λ, t) d(sin λ), (28)
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and of the activity belt

Φa(t) ≡ 2πR2
⊙

∫ 40◦

0°
Br(R⊙, λ, t) d(sin λ). (29)

We then define cycle maximum times, Ta, as the times when the
activity belt flux Φa is maximum. The times of the maximum
polar flux Tp is similarly defined. Ta and Tp are both defined by
the signed fluxes, and hence each have one maxima per magnetic
cycle (of about 24 years).

For each cycle, i, we then calculate the phase shift between
the polar maximum times and the activity maximum times ∆ϕ
by

∆ϕ = π[Tp(i + 1) − Ta(i)]/P − π, (30)

where P is the (activity) cycle period.

4. Results

We first present our reference model including the Babcock-
Leighton loss term in Section 4.1, then examine parameter sen-
sitivity (Sections 4.2 to 4.5), and finally gauge the importance of
the dynamo wave (Section 4.6).

4.1. Reference model

Our reference model has a bulk diffusivity of ηCZ = 10 km2/s,
which places the simulation in the advection-dominated regime
(an explanation of why such a low diffusivity is required in our
setup is given in Section 4.2.2). Values of τ0 = 12.5 years and
γ0 = 43.8 m/s were required to achieve a critical 12-year (activ-
ity) cycle period dynamo. The reference model is presented in
Figure 2. It can be seen that we are able to produce a reasonably
solar-like butterfly diagram when using the helioseismically-
inferred meridional flow of G20.

4.1.1. Comparison with observational constraints

This model has an emergence loss timescale of τL = 17.2 years,
somewhat longer than the 12 years inferred by CS20. The dif-
fusive loss timescale, on the other hand, is τη = 96.8 years.
The estimate of CS20 is based on all toroidal flux escaping
through the photosphere. The combined rate at which flux is
lost through the photosphere in the model can be estimated to
be 1/(1/τL + 1/τη) = 14.6 years and hence close to the inferred
12-year timescale. The value of ∆ϕ from the model is notice-
ably larger than the observed value at ∆ϕ = 134°. The maximum
value of the surface radial field in the butterfly wings is around
5 G, so about half of the maximum polar field strength (The ob-
served average polar field is similar to the average in the but-
terfly wings, see e.g. the butterfly diagrams in Hathaway 2015).
Considering the polar field strength is somewhat uncertain, our
results are not inconsistent with observations. Our simulations
do not have the problem of very large polar fields typical of FTD
models (Charbonneau 2020).

The net toroidal flux Φ (lower panel of Figure 3) shows that
it reaches a maximum value of about 5 × 1023 Mx close to cycle
maximum, which is in rather good agreement with the estimates
of Cameron & Schüssler (2015) for cycles 22 and 23.

An important result of our model is that it achieves confine-
ment of emergences to the low observed latitudes without the
need for an emergence probability decreasing faster than sin θ
with latitude. This can be seen in the upper panel of Figure 2,

where we see that the toroidal flux density is mainly strong near
the equator. The left panel of Figure 3 shows the toroidal field
is mainly stored deep in the convection zone. This confinement
of the toroidal field to deep in the convection zone is a conse-
quence of the imposed radial pumping. The confinement to near
the equator is then due to the meridional flow which advects the
material from high latitudes towards the equator. The combina-
tion of radial pumping and equatorward meridional flow in the
lower half of the convection zone leads to a stagnation point near
the equator in the lower half of the convection zone where the
field builds up until it is removed through emergence (also see
Cameron & Schüssler 2017; Jiang et al. 2013).

Our simulated butterfly diagram differs from the observed
one in that it lacks a distinct "rush to the poles" of the trailing
diffuse field of the decayed sunspots.

4.2. Parameter dependence

Our model has 5 free parameters: the source and loss terms
timescale τ0 and the depth where sunspots are anchored rS , the
turbulent pumping amplitude γ0 and the depth it reaches down to
rγ, and the turbulent diffusivity in the bulk of the convection zone
ηCZ . In this section we will first provide a qualitative description
of what different choices of the parameters produce.

Importantly, the results and constraints we find are for under
the assumption that fθ(θ) = sin θ, i.e. that there is no imposed
preference for emergences to occur at low latitudes. We also per-
formed simulations with fθ(θ) = sin12 θ (as in KC16), and as
expected were are able to find critical dynamo solutions which
match the observations for a much wider range of parameters.

4.2.1. Influence of the source depth

We here investigate how the choice of rS affects the solutions.
We used the same value of ηCZ as in reference case, and var-
ied rS . The values of τ0 and γ0 were then chosen so that the
growth rate is zero and the cycle period is 12 years. We found
that the solutions with flux loss are not very dependent on rS
for rS extending from just above 0.78 to the surface. This is be-
cause the solutions with flux loss require strong pumping which
rapidly stretches the poloidal field so that they extend radially
to the depth at which the pumping stops. This makes the model
insensitive to the initial depth of the poloidal source term in (at
least in the region of parameter space near the reference case).

4.2.2. The bulk diffusivity

We only find critical 12-year periodic solutions when the bulk
diffusivity is of the order of 10 km2/s. This is a consequence
of the strong radial shear of the equatorward component of the
helioseismically-inferred meridional flow uθ in the lower third
of the convection zone. The strong radial shear leads to toroidal
flux at different depths being advected in latitude at very differ-
ent rates. This implies that flux originally concentrated at one
latitude over a range of depths will be quickly spread out in lati-
tude.

To understand the role of the radial shear of the latitudi-
nal flow, we can imagine toroidal field initially at one latitude
but spread out in radius from r = 0.766R⊙ to 0.785R⊙. These
depths were chosen so that the meridional flow will vary from al-
most 1 m/s equatorwards to almost 0 m/s. Over 5 years this will
spread the flux over a latitudinal band of 157 Mm. This spread-
ing out would be similar to a diffusivity of (157)2/5 Mm2/year
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Fig. 2. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial field Br(R⊙) (middle), and the net toroidal flux in the north-
ern hemisphere Φ (bottom) for our reference model. The vertical dotted
lines indicate the times where the snapshots of Figure 3 were taken.

= 156 km2/s. In the context of Babcock-Leighton FTD models,
this is a large value. As a comparison, the 1D model of Cameron
& Schüssler (2017) which also assumes fθ(θ) = sin θ, requires
the latitudinal diffusivity in the bulk of the convection zone to be
lower than about 100 km2/s. This effective diffusivity is, how-
ever, in agreement with the estimate of of 150 − 450 km2/s of
Cameron & Schüssler (2016) based on the properties of the de-
clining phase of solar cycle.

The essential point of the above is that, unless the toroidal
field is confined to a narrow range of depths, the latitudinal shear
in the meridional velocity quickly spreads the toroidal field out
in latitude. Consequently, if there is no imposed preference for
emerging near the equator then the butterfly diagram ceases to be
solar-like. The requirement for confinement in latitude is what
imposes the constraint that ηCZ ≈ 10 km2/s. We consider this
fixed for the rest of this paper. We also comment that if the radial
shear in the differential rotation was weaker, then this constraint
would be much weaker.

4.2.3. Turbulent magnetic pumping

With our chosen fθ(θ) = sin θ (Eq. 10), we find growing dy-
namo solutions only for values of rγ not far away from 0.785R⊙.
This depth is where the helioseismically-inferred meridional
flow profile changes direction from poleward to equatorward,
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Fig. 3. Meridional cuts of the North hemisphere toroidal field (left col-
umn) and poloidal field (as r sin θA, right column) of the reference
model for specific times indicated by the vertical dotted lines in Fig-
ure 2. The dotted lines are located at radii of 0.95, 0.85, and 0.80R⊙, the
approximate locations of the bottom of the near-surface shear layer, rS ,
and rγ respectively.

and roughly where numerical simulations suggest the convec-
tion zone might be weakly subadiabatic (Hotta 2017). A slightly
broader range of pumping depths can be achieved when the loss
term is not included, but shallower depths make the butterfly
wings broader.

Our conclusion from this is that the pumping depth is fairly
tightly constrained if the appearance of spots to low latitudes
is only caused by the equatorward meridional flow leading to a
build up at low latitudes. The depth of the pumping is poorly
constrained if the preference for low latitude emergence is im-
posed.
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Fig. 4. Time-latitude diagrams of the toroidal flux density b (top), sur-
face radial field Br(R⊙) (middle), and the net toroidal flux in the north-
ern hemisphere Φ (bottom) for the case without the flux loss associated
with flux emergence (and with a period of 12 years and zero growth
rate). The vertical dotted lines indicate the times where the snapshots of
Figure 5 were taken.

Observations do not provide estimates for the amplitude of
turbulent pumping at depth, and so it is interesting to compare
our results with those from global MHD simulations. Shimada
et al. (2022) find that in the outer half of the convection zone has
a turbulent diffusivity of ∼ 10 km2/s, similar to the values we
needed in our model without an imposed preference for emer-
gence at low latitudes, they also find that γr peaks at ∼ 10 m/s,
while Simard et al. (2016) and Warnecke et al. (2018) find am-
plitudes of the order of 1 − 2 m/s or half the root-mean-square
velocity. The latter is of the order of 40 m/s according to mixing-
length (Vitense 1953; Böhm-Vitense 1958) estimates. It thus ap-
pears the pumping velocities required in the reference case are
too large by a factor of 2 to 3. We defer a discussion of this to
Sections 4.4 and 4.5.

4.3. Role of the toroidal flux loss term L

In order to gauge the importance of emergence loss term, in this
subsection we switch off the term by setting L = 0 in Equa-
tion 4. We first use the same parameters as in the reference case.
The resulting cycle period is shorter at 11.3 years. However, the
solution is rapidly growing, with a growth rate of about 66%
per cycle. This growth is not unexpected, as emergences are no
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Fig. 5. Meridional cuts of the North hemisphere toroidal field (left col-
umn) and poloidal field (as r sin θA, right column) of the the case with-
out the flux loss associated with flux emergence (and with a period of
12 years and zero growth rate) for specific times indicated by the ver-
tical dotted lines in Figure 4. The dotted lines are located at radii of
0.95, 0.85, and 0.80R⊙, the approximate locations of the bottom of the
near-surface shear layer, rS , and rγ respectively.

longer able to remove the subsurface toroidal flux and it must
now be removed either through its "unwinding" by the new cy-
cle flux, or by diffusive cancellation across the equator. Because
emergences no longer deplete the subsurface toroidal flux, more
poloidal field is generated so that the polar fields are reversed
much faster, explaining the shorter period.

We also investigated the 12 year period critical solutions
when L = 0. Doing so required τ0 = 9.3 years (as against the
reference case where τ0 = 12.5 years), and a turbulent pump-
ing γ0 = 6.41 m/s. The time-latitude diagrams and meridional
cuts for this case are shown in figures 4 and 5. The surface dif-
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fusion loss timescale is reduced to τη = 25.6 years, only a factor
of two larger than the observed value of the toroidal flux loss
timescale. This is due to the lowered pumping amplitude, which
makes the diffusion of the toroidal field through the surface less
difficult than in the case with strong pumping. Even with such
low pumping, the poloidal field near the surface is still almost
radial (Figure 5).

Looking at the butterfly diagram, the most apparent differ-
ence is the large decrease of the polar field strengths compared
to the fields in the butterfly wings. The maximum value of the
latter goes up from about 5 to 7.5 G, which is relatively close to
the observed value of around 10 G. In this case, we find maxima
phase between the polar field maxima and active region maxima
is 101◦, similar to that which is observed.

Note that the pumping amplitude of γ0 = 6.41 m/s in this
model is in much better agreement with estimates from global
MHD simulations (cf. Section 4.2.3). This is because models
without the loss term achieve shorter periods much more easily.
In principle, then, very large pumping velocities are not neces-
sary to obtain a functioning dynamo for this class of models.

4.4. Sensitivity to the meridional flow and differential rotation

Here we investigate how sensitive the simulations are to the
meridional flow and differential rotation. We do this by consider-
ing the inferred meridional flow for cycles 23 and 24 separately,
and a differential rotation profile which differs significantly from
the one of the reference model at high latitudes. As is also the
case for the reference solution, we do not impose a preference
for emergences at low latitudes (if we impose a preference for
emergences at low latitudes, then the parameter space where the
model has similar properties to the observations becomes much
larger). As all solutions mentioned in this section have qualita-
tively the same butterfly diagrams as the reference case they are
not shown.

First, we consider individually the symmetrized (across the
equator) meridional flow profiles of cycles 23 and 24. Using the
meridional flow from cycle 23, a 12-year periodic critical dy-
namo requires γ0 = 16.3 m/s. This is a substantial reduction from
the reference case. Increasing the period to 13.3 years and keep-
ing the criticality requirement led to pumping speeds of γ0 = 10
m/s. Using the meridional flow from cycle 24, we were unable to
find critical solutions with periods shorter than 12 years. A criti-
cal solution with γ0 = 10 m/s required a period of 16.6 years.

Clearly the model, where emergence is not restricted to low
latitudes, is very sensitive to the meridional flow. This is because
emergences at high latitudes are inefficient at getting flux across
the equator, which is what eventually reverses the polar fields.
The observational constraint, that the cycle period is similar to
the timescale for which toroidal field is lost through the surface
due to flux emergence, implies that the cycle period involves a
balance between the flux transport to low latitudes and the loss
through emergence.

In this context, both mean-field theory (eg. Kichatinov 1991;
Kitchatinov & Nepomnyashchikh 2016) and global numerical
models (eg. Shimada et al. 2022, and references therein) indi-
cate equatorial latitudinal turbulent pumping could also be sub-
stantial. From the BL-FTD modelling this would correspond to
an increase in the meridional return flow, and would lead to a
reduction in the strength of the required radial pumping.

Second, we consider the sensitivity to differential rotation.
Again we consider critical 12-year periodic solutions, using the
average meridional flow profile used in the reference case. We
now use the differential rotation profile of Larson & Schou
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Fig. 6. Percental per-cycle growth of the toroidal flux (solid line, left
axis) and cycle period (dashed line, right axis) as a function of the
timescale parameter τ0.

(2018), which differs from that of the reference at high latitudes
(rather than the analytic fit of Belvedere et al. (2000) often used
in dynamo studies and used in the reference case). The required
parameter values are τ0 = 11.8 yrs and γ0 = 28.5 m/s. τ0 is
again of the order of cycle period and the 12-year estimate for
the toroidal flux loss timescale of Cameron & Schüssler (2020).
But the pumping velocity is much more reasonable.

4.5. Sensitivity to assumption that growth rate is zero and
period is 12 years

We have thus far concentrated on the kinematic regime with zero
growth rates. The Sun is certainly in a statistically saturated state.
The kinematic case with growth rate zero is relevant if the system
is weakly nonlinear. Whether or not this is the case for the Sun is
open (for arguments in favour of this see van Saders et al. 2016;
Metcalfe et al. 2016; Kitchatinov & Nepomnyashchikh 2017). In
the strongly nonlinear case, the period will be substantially af-
fected by the choice of the nonlinearity and the growth rate in the
linear regime is no longer a constraint. The observations are thus
less constraining in the strongly nonlinear case. For this reason,
we have focused on the weakly nonlinear case and have looked
for zero-growth rate solutions to the linear problem. The addi-
tion of a weak nonlinearity will slightly modify both the growth
rate (in the saturated state it will be zero) and period. Hence in
this section we consider the sensitivity of the growth rate and
periods to τ0 and γ0.

Figure 6 shows the cycle period and the growth of the
toroidal flux per cycle as a function of the timescale parame-
ter τ0. As in KC16, we observe that increasing the source term
amplitude τ−1

0 causes the growth rate to increase until the cycle
period becomes too short for the meridional flow to transport the
field (see Section 4.1 of KC16). Eventually, the dynamo shuts
down completely. Growing solutions can nonetheless be reached
by further increasing the source term amplitude τ−1

0 . However,
the resulting cycle periods are very short (≲ 3 years) and the
dynamo is now driven by a dynamo wave propagating equator-
wards in the high-latitude tachocline.

The effect of the pumping amplitude on the growth rate and
cycle period is shown in Figure 7. The growth rate is very sen-
sitive to the pumping amplitude at lower values, where the oper-
ating threshold is not yet met, as flux emergence then quickly
removes the toroidal flux at high latitudes. But the effect of
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Fig. 8. Butterfly diagram of our reference model where the equatorward
component of the meridional flow was shut off.

pumping saturates as its amplitude increases. At some point the
time required for the poloidal field to reach the lower convec-
tion zone is essentially instantaneous. Note that we have con-
centrated on solutions near the bifurcation point where dynamo
action switches on. This very likely makes the model more sen-
sitive to the different parameters than would be the case if we
were considering a non-linear, saturated dynamo.

4.6. Role of the dynamo wave

To investigate what role the subsurface meridional return flow is
playing, we apply the same procedure as KC16 to our reference
model, namely we switch off the equatorward component of the
meridional flow (see Section 3.2 of KC16 for a discussion). Fig-
ure 8 shows the resulting magnetic field butterfly diagram. For
the reference parameters this mode is decaying (and so is not
a dynamo) with fields almost entirely located above 45◦. Since
there is no equatorward component of the meridional flow, the
equatorward migration of the field is due to the negative radial
rotation shear in the high-latitude tachocline, and the direction
of propagation is in accordance with the Parker-Yoshimura sign
rule. We hence, not surprisingly, conclude that the subsurface
meridional flow is essential in this model.

5. Conclusion

Using the helioseismically-inferred meridional flow of G20, we
have shown that the Babcock-Leighton FTD model remains gen-

erally consistent with observations. We have also shown that the
long-standing problem of the latitudinal distribution of sunspots
can be solved if turbulent pumping reaches depths just under
0.80R⊙, but not much deeper, where the meridional flow’s di-
rection switches from poleward to equatorward. High turbulent
pumping velocities are necessary to essentially store the toroidal
flux under this location, in agreement with the results of G20
(see also Parker 1987). There, the meridional flow, in conjunc-
tion with the Ω-effect through the latitudinal shear present in the
bulk of the convection zone (which is maximal at mid-latitudes),
causes an accumulation of toroidal flux at equatorial latitudes.
Turbulent pumping effectively short-circuits the meridional cir-
culation, preventing significant generation of toroidal field at
high latitudes. No additional restriction of emergences to low
latitudes is required.

Our model using the helioseismically inferred meridional
flow, and including the observed toroidal flux loss associ-
ated with flux emergence in a way that is consistent with the
Babcock-Leighton source term, is able to reproduce the observed
properties of the solar cycle, including the latitudinal migration
of the sunspot wings and the approximately 11 year period. Our
reference model predicts a toroidal flux loss timescale of 14.8
years at cycle maximum, compared to the estimate of 12 years
of CS20.
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Karak, B. B. & Cameron, R. 2016, ApJ, 832, 94
Kichatinov, L. L. 1991, A&A, 243, 483
Kichatinov, L. L. & Pipin, V. V. 1993, A&A, 274, 647
Kitchatinov, L. & Nepomnyashchikh, A. 2017, MNRAS, 470, 3124
Kitchatinov, L. L. & Nepomnyashchikh, A. A. 2016, Advances in Space Re-

search, 58, 1554
Kitchatinov, L. L. & Olemskoy, S. V. 2011, Astronomy Letters, 37, 656
Komm, R. W., Howard, R. F., & Harvey, J. W. 1995, Sol. Phys., 158, 213
Krause, F. & Rädler, K. H. 1980, Mean-field magnetohydrodynamics and dy-

namo theory
Larson, T. P. & Schou, J. 2018, Sol. Phys., 293, 29
Leighton, R. B. 1964, ApJ, 140, 1547
Leighton, R. B. 1969, ApJ, 156, 1
Lemerle, A., Charbonneau, P., & Carignan-Dugas, A. 2015, ApJ, 810, 78
Longcope, D. & Choudhuri, A. R. 2002, Sol. Phys., 205, 63

Article number, page 9 of 10



A&A proofs: manuscript no. cloutier2023

Metcalfe, T. S., Egeland, R., & van Saders, J. 2016, ApJ, 826, L2
Moffatt, H. K. 1978, Magnetic field generation in electrically conducting fluids
Moss, D., Tuominen, I., & Brandenburg, A. 1990a, A&A, 240, 142
Moss, D., Tuominen, I., & Brandenburg, A. 1990b, A&A, 228, 284
Muñoz-Jaramillo, A., Nandy, D., & Martens, P. C. H. 2011, ApJ, 727, L23
Muñoz-Jaramillo, A., Nandy, D., Martens, P. C. H., & Yeates, A. R. 2010, ApJ,

720, L20
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2013, ApJ,

762, 73
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2014,

Sol. Phys., 289, 441
Ossendrijver, M. 2003, A&A Rev., 11, 287
Parker, E. N. 1955, ApJ, 122, 293
Parker, E. N. 1987, Sol. Phys., 110, 11
Press, W. H., Flannery, B. P., & Teukolsky, S. A. 1986, Numerical recipes. The

art of scientific computing
Schmitt, D. & Schüssler, M. 1989, A&A, 223, 343
Schou, J., Antia, H. M., Basu, S., et al. 1998, ApJ, 505, 390
Shimada, R., Hotta, H., & Yokoyama, T. 2022, ApJ, 935, 55
Simard, C., Charbonneau, P., & Dubé, C. 2016, Advances in Space Research, 58,

1522
Steenbeck, M., Krause, F., & Rädler, K. H. 1966, Zeitschrift Naturforschung Teil

A, 21, 369
van Saders, J. L., Ceillier, T., Metcalfe, T. S., et al. 2016, Nature, 529, 181
Vitense, E. 1953, ZAp, 32, 135
Wang, Y. M., Sheeley, N. R., J., & Nash, A. G. 1991, ApJ, 383, 431
Warnecke, J., Rheinhardt, M., Tuomisto, S., et al. 2018, A&A, 609, A51
Wright, N. J. & Drake, J. J. 2016, Nature, 535, 526
Zhang, Z. & Jiang, J. 2022, ApJ, 930, 30

Article number, page 10 of 10


	Introduction
	Model
	Dynamo equations
	Differential rotation and meridional circulation
	Turbulent parameterizations
	Flux emergence
	Numerical procedure

	Observational constraints
	Toroidal flux loss timescale
	Polar cap and activity belt flux densities
	Cycle phase of polar maxima

	Results 
	Reference model
	Comparison with observational constraints

	Parameter dependence
	Influence of the source depth
	The bulk diffusivity
	Turbulent magnetic pumping

	Role of the toroidal flux loss term L
	Sensitivity to the meridional flow and differential rotation
	Sensitivity to assumption that growth rate is zero and period is 12 years
	Role of the dynamo wave

	Conclusion

